Instruments and methods for measuring the
backward-scattering coefficient of ocean waters

Robert A. Maffione and David R. Dana

The backward-scattering coefficient b,, is an important optical property that plays a central role in studies
of ocean-color remote sensing, suspended particle distributions, water clarity, and underwater visibility.
We investigate the fixed-angle backscattering sensor approach for the application of measuring b,,.
Analysis shows that the Sensor response to volume scattering can be expressed as the integral of the
volume scattering function (VSF) over the backward angles (90-180°) weighted by the sensor-response
function. We present a procedure for determining the sensor-response function that contains all the
information necessary to calibrate the sensor fully to measure the VSF at a nominal backscattering angle.
It is shown that, for fixed-angle backscattering sensors, b, is most accurately estimated when the
sensor-response function covers the middle range of backscattering angles, roughly 110-160°, where the
shape of the VSF has the least variability. Backscattering at and near the end angles, namely, 90° and

180°, are least correlated with b,,.

We describe a variety of spectral backscattering sensors that we have

developed, and we present their sensor-response functions. © 1997 Optical Society of America
Key words: Ocean optics, backscattering, oceanographic instruments.

1. Introduction

The backward-scattering coefficient b, is of funda-
mental importance to ocean-color remote sensing.
Although spectral absorption by ocean water modifies
the spectrum of the submarine light field, it is spec-
tral backscattering, predominantly by suspended
particles, that provides the remotely sensed optical
signal. The measured intensity of the light back-
scattered by the ocean, which is used to infer the
concentration of ocean water constituents such as
phytoplankton, is of limited value without knowledge
of b,. Historically a great deal of attention has been
devoted to developing instruments and methods for
determining spectral absorption of ocean water and
its individual constituents. (See Pegau et al.! for a
review of the many methods available for measuring
absorption.) Ironically, however, there has been a
surprising lack of attention to directly measuring the
backward-scattering coefficient, particularly spec-
trally.
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Here we describe instruments and methods for di-
rectly measuring backward light scattering by ocean
water in calibrated units of the volume scattering
function (VSF) (per meter per steradian) or the
backward-scattering coefficient (per meter). These
instruments and methods were initially developed
over many years at SRI International, and these ex-
periments are now continuing at Hydro-Optics, Biol-
ogy, and Instrumentation Laboratories. A unique
calibration method, presented in detail here, is used
to convert the optical backscattering signal to a mea-
surement of the VSF at a nominal backscattering
angle. The particular angle depends on the optical
geometry of the instrument and, to a much lesser
degree, the shape of the VSF in the backward hemi-
sphere as well as the attenuation coefficient of the
water. Multiplying this measured VSF by a suitable
conversion factor then converts the VSF to b,. The
shape of the VSF in the backward hemisphere, gen-
erally known from measurements by others (e.g., Pet-
zold? and Kullenberg?) and from calculations with
Mie theory, greatly constrains the values of the con-
version factor so that use of a constant value results
in a likely standard error in b, of ~10%. A previ-
ously published analysis by Oishi¢ shows that the
maximum likely error is ~17% of the estimated value
of b, by this method. Regardless of any error in the
conversion to b,, measurement of the VSF at a nom-
inal backward angle is shown to be highly accurate
and is partially traceable to a National Institute of
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Projects Agency program called LIDEX.

Standards and Technology standard. It is therefore
recommended that the calibration method presented
here be adopted as a standard protocol for measuring
the VSF in the backward hemisphere, which should
greatly aid in the comparison and interpretation of
worldwide measurements.

2. Background

A. History

Hgjerslev® credits Pettersson® with constructing the
first in situ optical backscattering sensor. Petters-
son’s instrument used an incandescent light bulb and
two large-area photocells. The sensor did not incor-
porate spectral filters and was not calibrated to pro-
vide measurements in units of an optical property,
such as the VSF at a nominal angle or 4,. However,
given the technology of the time, Pettersson’s instru-
ment was impressive and marks a milestone in the
development of ocean-optical backscattering sensors.

General-angle scattering meters, sometimes re-
ferred to as nephelometers, started to be developed in
the late 1950’s and early 1960’s for in situ studies.
To our knowledge, the first published paper on a
submersible, general-angle scattering meter was by
Tyler and Richardson? in 1958. Their instrument
covered the angular range from 20° to 170° and was
calibrated to give measurements in units of the VSF
(per meter per Steradian). In theory a properly cal-
ibrated general-angle scattering meter provides the
most accurate way of determining &,, since it mea-
sures the VSF over a range of backscattering angles.
However, this type of instrument is notoriously diffi-
cult to calibrate accurately, and it is cumbersome and
time-consuming to deploy. Kullenberg? gives a re-
view of the various submersible general-angle scat-
tering meters until that time and discusses some of
the problems with their calibrations. The current
study is concerned with fixed-angle optical backscat-
tering sensors and their calibration for spectrally de-
termining the VSF at a nominal backscattering angle
as well as the backward-scattering coefficient.

The first fixed-angle backscattering sensors de-
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Schematic layout of the backscattering sensor developed at SRI International in the early 1980’s under an Advanced Research

signed and calibrated for measuring the VSF of ocean
water were developed at SRI International® in the
early 1980’s under a program funded by the Ad-
vanced Research Projects Agency. The program
was called LIDEX for light detection experiment.
These sensors used infrared light-emitting diodes
(LED’s) and high-frequency phase-synchronous pho-
todetection. The major advantages in using an LED
as the light source are its relatively low power con-
sumption and ability to be modulated electronically
at rapid rates. The drawback at that time was that
the only available LED’s that were bright enough for
the application of measuring backscattering by ocean
water were IR LED’s. The original SRI backscatter-
ing sensors used visible-blocking filters and mea-
sured backscattering over the spectral bandwidth of
the LED centered at 880 nm. Figure 1 shows a sche-
matic layout of this sensor.

The absolute calibration was based on the sensor’s
response to a reflectance standard. This method in-
volved measuring the response of the sensor to a
Lambertian target as a function of range from the
sensor. The resulting calibrated measurement pro-
vided an estimate of the VSF (per meter per steradi-
an) at a nominal backscattering angle.® Later a
more rigorous analysis by Maffione et al.® of this cal-
ibration scheme showed that, for the original sensor
geometry, the backscattering angle was nominally
150°. The analysis by Maffione et al. improved the
accuracy of the calibration by taking into account
geometrical factors that had previously been ne-
glected.

It is possible to use other types of light source at the
expense of some of the advantages of LED’s. In the
late 1980’s members of the Johns Hopkins University
Applied Physics Laboratory developed a backscatter-
ing sensor using a bright incandescent lamp (Smart
et al.'?). These sensors incorporated spectral ab-
sorption filters centered at 490 and 532 nm., giving
the sensors the distinction of being the first visible-
wavelength, fixed-angle backscattering sensors.
The optical geometry was designed to yield a mea-
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Fig.2. Second-generation backscattering sensor developed at SRI
in1991. The major improvement was better collimating optics for
application in the visible spectrum (400 to 700 nm) and for esti-
mating b,.

surement of the VSF at a centroid angle of 170°,
which is desirable for lidar applications (although
170° is undesirable for estimating the backward-
scattering coefficient).

The next advance came in 1991 when we rede-
signed the optics and electronics of the SRI’s IR sen-
sor to take advantage of visible-wavelength LED’s.
Figure 2 shows a schematic of this sensor, illustrating
its more narrow optical geometry that resulted in a
measurement of the VSF at a nominal angle of 135°.
The lower backscattering angle was necessary to es-
timate b, more accurately from a single-angle VSF
measurement (explained below). We first deployed
the newly modified sensors during the Office of Naval
Research ocean-optical closure experiment at Lake
Pend Oreille, Idaho, in the spring of 1992. We used
only one visible wavelength, centered at 565 nm, in
the newly modified sensors because sufficiently
bright LED’s were not yet available at other visible
wavelengths. When bright LED’s at a variety of vis-
ible wavelengths later became available, we devel-
oped a five-wavelength backscattering sensor!! that
was incorporated into a remotely operated vehicle.!2
This multiwavelength sensor, dubbed the Slab, incor-
porated the same optical and electrical design as the
single-wavelength visible sensor.

Following this achievement we completely rede-
signed both the optics and electronics so that a more
compact and robust multiwavelength backscattering
sensor could be developed. The first version was a
four-wavelength backscattering sensor called the
BB-4. A second version included a four-wavelength,
folded-path beam transmissometer and was called
the BBC-4. The final version, which is now avail-
able commercially, is a six-wavelength backscatter-
ing sensor called the HydroScat-6. The optical
layout of these sensors is shown in Fig. 3. These
new sensors incorporate a unique electro-optical
scheme that effectively cancels any ambient light sig-
nal. Thus maximum signal gain can be used even
near the surface in bright sunlight. Narrow-band
interference filters appropriately chosen within the
broader spectral bands of the LED’s are used in the
receiving optics to select the measurement wave-
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Fig.3. Optical layout of the BB-4, BBC-4, and HydroScat-6. The
HydroScat-6 does not include the condenser lens but instead uses
a single, fast achromat.

lengths. Each spectral channel has its own unique
modulation frequency so that the receivers detect
only the backscattered LED light from their respec-
tive channels. Thus a 670-nm receiver, for example,
does not detect fluorescence excited by an adjacent,
shorter-wavelength LED. Conversely, the receiver’s
modulation frequency can be dynamically phase
locked to another channel so that it can detect fluo-
rescence if this is desired.

B. Notation and Definitions

The angular distribution of scattering by a small vol-
ume can be described by the VSF B({), defined as the
second partial derivative of the scattered flux ® with
respect to solid angle ) and scattering volume V,
normalized by the incident, collimated irradiance E,
viz.,

B(Y) = 9*D(Y)/EoQaV, (1)

where ¢ is the polar scattering angle with respect to
the collimation axis of the incident irradiance. Al-
though not shown explicitly, B(¥) is a function of
wavelength N. In the ocean B(¥s) also varies with
time and space but is usually denoted as a function of
only depth z.

Two useful optical properties can be derived from
B(W): the total scattering coefficient & and the
backward-scattering coefficient ,. They are respec-
tively defined by

o [ ] v

=27 | B(Y) sin Ydy;, (2)

b, =2x B(Y) sin ll!dl!!». (3)

2
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This latter optical property, b,, finds its widest ap-
plication in ocean-color remote sensing because it can
be related in a simple though approximate way to the
amount of solar light that is backscattered by the
ocean, which in turn provides the spectrum of light
emerging from the sea. For example, using the ap-
proximate two-flow (Shuster’s) method or the method
of successive scattering order starting with the full
radiative transfer equation, one can show that, to
first order, the irradiance reflectance is approxi-
mately fb,/a, where a is the absorption coefficient
and f'is a factor that dependg on certain environmen-
tal conditions.13.14

3. Theoretical Development and Calibration
Methodology

The theoretical development and methodology pre-
sented here for calibrating an optical backscattering
sensor and understanding its optical response and
accuracy are completely general except for two con-
straints: the faceplate of the sensor is assumed to be
flat and the optical geometry is fixed (in other words,
it is a fixed-angle sensor). Note here that the term
backscattering implies that the sensor measures
light scattered through angles greater than 90°, i.e.,
the backward hemisphere. It is of course possible to
construct a backscattering sensor with a faceplate
that is not flat; for example, it could be concave, such
as in the design of some free-angle nephelometers
(see, for example, the description by Jerlov's), or it
could be a right-angle faceplate so that the source and
receiver are perpendicular, as in most in situ luorom-
eters. The analysis presented here could be ex-
tended to include a variety of faceplate designs,
although for the application of measuring b, a nonflat
faceplate design is discouraged. Calibrating such
sensors by the method described in this paper could
be quite complicated or impossible. Moreover, a
nonflat faceplate can increase the likelihood that
light scattering by the faceplate itself will contami-
nate the water scattering signal. This is especially
problematic for a right-angle design such as that used
in submersible fluorometers. Unless there is a com-
pelling need for a nonflat faceplate, it is strongly
recommended that future backscattering sensor de-
signs incorporate a flat faceplate to allow for accurate
calibration.

Figure 4 shows a schematic of the general optical
geometry for a backscattering sensor. The fixed geo-
metrical parameters that define the optical design of
the sensor are the following:

H is the distance between optical axes of the
source and detector,
8os is the in-water (i.e., refracted) angle of the
source optical axis,
8o is the in-water angle of the detector optical axis,
o, is the FWHM divergence angle of the source,
a, is the FWHM field of view (FOV) of the detector.

Distinct from the fixed parameters are the geometri-
cal variables, defined by Fig. 4 as the following:
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Fig. 4. Optical geometry for a generic fixed-angle backscattering
sensor.

z is the linear distance perpendicular to the face-

plate,

s is the water-path distance from the source to in-

finitesimal scattering volume,

rq is the water-path distance from scattering vol-
ume to the detector,

0; is the centerline angle of that portion of the
source beam that illuminates scattering volume
dv,

8, 1is the centerline angle of that portion of the de-
tector FOV that subtends intersecting scattering
volume dV,

{ is the scattering angle.

Note that the latter five variables can all be con-
sidered dependent variables of z. The dependent
variable functions are all simple geometrical relation-
ships involving fixed parameters.

In general the source beam has a finite area where
it enters the water at the pressure window, which is
not shown in Fig. 4. Likewise, the detector FOV has
a finite area of acceptance at the water side of the
window. These are omitted for simplicity and clar-
ity in the presentation of the analysis but are easily
taken into account by moving the origin of z, the axis
perpendicular to the faceplate, further to the right in
Fig. 4. Simple trigonometry can then be used to
correct optical path lengths r, and r,. If the areas
are relatively small it is an excellent approximation
to assume simply that the source and detector cones
converge to a point at the window in the manner
illustrated in Fig. 4.

Scattering volume dV = AAdz/cos 6, is defined by
the intersection of the source beam and FOV of the
detector, and it is a function of distance z. The in-
tersecting volume is illustrated by the darker shaded
region in Fig. 4. AA(z) is the area perpendicular to
the z axis subtended by dV at the detector. Also note
that path lengths r, and r, intersect at the center of
dV so that the angles that r, and r, make with the
optical axis are likewise a function of z. At a certain
distance denoted by, say, z,,,;4, lines r, and r,; coincide
with the source beam and detector optical axes, re-
spectively. The scattering angle at z,,;, denoted



Umia» is not, however, the scattering angle at the peak
response of the sensor, nor is it the centroid scatter-
ing angle. This is made clear below.

Let @, denote the radiant flux emitted into the
water by the source beam. If A(z) is the total area
illuminated by the beam perpendicular to the z axis,
the flux A®,4(z) incident on dV is

ADyy(z) = By exp(—cr,)AA(2)/A(z).
Irradiance E incident on dV is therefore

E(2) = AD(2)/AA(2)
= ®, exp(—cr,)/A(2).

By the definition of the VSF in Eq. (1), the flux scat-
tered into the solid angle A€}, which is determined by
the FOV of the detector, is given by

AD(Y, 2) = B(Y) E(2)AQ(2)AV(2) *
= B[ D, exp(—cr,)/A(2)[[AA(2) cos 0,/r,%]
X [AA(z)dz/cos 8,] _
= B(U)Dy(cos 6,/cos 8,)[exp(—cr,)/r,’]
X [AA%(2)/A(2)]dz, 4)

where infinitesimal dependent variables are replaced
by their corresponding real, finite quantities. In the
second line of Eq. (4) the last two bracketed quanti-
ties are A{)(z) and AV(z), as obtained from the geom-
etry. The expression for AQ(z) assumes no
vignetting at the detector, which is always true for
the small optical path lengths involved with the types
of backscattering sensors considered here. The scat-
tered flux arriving at the detector’s pressure window
is then :

ADg(, 2) = AD(Y, z) exp(—cry)
= B(W)Do(cos 0,/cos B,{exp[—c(r, + r,)1/r’}

X [AA*(z)/A(z)]dz
= BW)DW(z; c)dz, (5)

where

W(z; ¢) = (cos 0,/cos B {exp[—c(r, + r))]/r,"
X [AA*(2)/A(2)] (6)

is defined as the sensor-response weighting function
to scattering. We denote the dependence of W(z; c)
on parameter c explicitly to distinguish the weighting
functions that result from waters with different at-
tenuation coefficients. Note that ¢ is not the true
beam attenuation coefficient but here represents the
attenuation coefficient for the sensor’s light-source
beam. As shown below, W(z; ¢) is a relatively weak
function of ¢ so that even rough measurements or
estimates of ¢ are adequate for an accurate attenua-
tion correction.

Integration of Eq. (5) over all z from 0 to « gives the
total flux scattered into AQ(z) arriving at the detector
window. The response of the detector is propor-

Fig. 5. Optical geometry for analyzing the sensor response to a
Lambertian target.

tional to this flux as well as to an electronic gain
factor. For calibration purposes the detection elec-
tronics are usually designed to incorporate variable
gain settings. Let the gain-factor setting for the de-
tection of volume scattering be denoted g,. This
gain factor can be thought of as incorporating all
electronic and optical conversion factors, such as de-
tector efficiencies and losses, through the optical
train. Then the detection signal denoted ®; is given
by

Dy = Dygy j ) BW)W(z; c)dz

0

= Dg,BU) f Wiz 0)de. 1)

0

The last step is justified by the integral mean value
theorem; i.e., |* takes whatever value, within the
limits of integration, that gives the equality in Eq.
(7). As mentioned above, the scattering angle  is
implicitly a function of z. The value of §* depends
both on W(z; ¢) and the shape of the VSF. How-
ever, as shown below, {* is determined primarily by
W(z; ¢). The units of ®, are not relevant because
the calibration describecﬁa below involves a ratio of
two measurements that cancels radiometric units.
In other words, g; does not need to incorporate a
quantum-electronic conversion factor to convert the
electronic signal to absolute radiometric units such
as watts.

The calibration method involves measuring the in-
water response of the sensor to a Lambertian target
as a function of z. Figure 5 illustrates the geometry
with a Lambertian target at a distance z. The re-
sponse of the sensor is similar to Eq. (6), but the VSF
is replaced by a surface scattering function p/mr,
where p is the diffuse reflectivity of the Lambertian
target. Because the target is Lambertian, the sur-
face scattering function is independent of scattering
angle. Similarly to the derivation for the response of
the sensor to volume scattering, the surface scatter-
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ing response denoted Ad (z) to a Lambertian target
at a distance z is found to be

AD(z) = g, (p/m) cos® B, {exp[ —c, (1, + r,)]/r.%
X [AA*(2)/A(2)]
= ®yg,(p/m)(cos 6, cos 6,)W(z; c,,). €))

In this case we denote the beam attenuation coef-
ficient c,, to distinguish it from ¢ in Eq. (7), which is
the attenuation coefficient of the (e.g., ocean) water
whose backscattering proper#ies are being measured.
A® (z) is assumed to be measured in clear filtered
water so that the target surface scattering greatly
dominates the water volume scattering. The impor-
tant difference between Egs. (8) and (5) is the cosine
factors. The cos 6, factor is missing in the denomi-
nator of Eq. (8) because there is no dV = AAdz/cos 0,
since Eq. (8) deals with surface scattering.. The ad-
ditional cos 8, factor arises because the intensity of
the scattered light from a plane Lambertian source
varies as the cosine of the angle from the surface
normal direction. It is important to distinguish this
from the radiance emitted by a Lambertian source,
which is constant with direction. Multiplying Eq.
(8) by dz/cos 6, cos 6, and integrating yields

* AP
P O
, ©0S 6, cos 6,

— Bug,(p/T) f Wiz eu)de. )

0

Taking the ratio of Egs. (7) and (9) and solving for
B(W*) gives :

f , W(z; c,)
(ggp 0

)
B =+ —
gB ™ (I)p *
f W(z; c)
0
= ::: pol(c, ¢,), (10)

where

n=(p/m)(g,/P,), (11)

o(c, ) = f Wi cw)/ f W, a2

0 0

Thus one can convert the direct backscattering mea-
surement @ to B(y*) by normalizing ®; by the elec-
tronic gain factor g, which is set at the time of the
measurement, and multiplying by the calibration
constant p and the attenuation correction factor o(c,
c,). Since Eq. (10) involves the ratio of the two gain
factors g and 8,, they need to be known only relative
to each other. In other words, it is not necessary to
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know the various electronic and optical conversion
factors implicitly incorporated into 8pand g,.

The constant calibration factor w can be deter-
mined by measurement of the response of the sensor,
usually in a laboratory tank containing filtered wa-
ter, to a Lambertian target as a function of range z.
This measurement yields A, (2), as given by Eq. (8).
Integration of A® (z)/cos b, cos B, then gives ® , asin
Eq. (9). The cosine factors cos 6, cos 6, needed in the
integration of A® (2) are easily derived from the ge-
ometry in Fig. 5 and can be computed numerically.
Spectralon is recommended as the Lambertian target
because its reflectivity is known to high accuracy and
does not change in water when its surface is properly
wetted to remove air bubbles trapped on its surface.
Sufficient wetting of the target’s surface can be
achieved by its being wet sanded while it is sub-
merged or by a rubber blade being repeatedly swept
across its surface.

The weighting function W(z; ¢,,) is fundamental to
the characterization and calibration of backscatter-
ing sensors. In theory W(z; c,) could be calculated
from first principles, but this would be extremely
cumbersome because accurate analytic expressions
are required for the cross-sectional profile of the beam
and detector FOV. A better and almost certainly
more accurate way to determine W(z; c,,) is to mea-
sure it in some fashion. This can essentially be done
through the measurement of Ad (z). Dividing Eq.
(8) by cos 6, cos 0, exp[—c,(r, + r,)]/r,? gives

AD (2){r,” explc,(r, + r,)]/cos 0, cos 0}
= k[AAz(z)/A(z)] =kG(2), (13)

where k£ = ®yg, (p/m) is a constant and

G(z) = AAX(2)/A(z), (14)

which is strictly a function of the optical geometry of
the sensor. Like cos 6, cos 6, the factor exp[—c,(r,
+ ry)]/r4® can easily be calculated based on the ge-
ometry in Fig. 5. The only empirical parameterisc,,
of the water in which A® (z) is measured. This at-
tenuation coefficient can f)e measured with a trans-
missometer or estimated by being assumed to be the
value for pure water. The constant # does not need
to be known, because only the relative shape of W(z;
¢,) is needed. For example, the computation of alc,
¢,,) given by Eq. (12) involves the ratio of W(z; ¢,,) and
W(z; c), thus canceling k. Once G(z2) is computed
from the formula on the left-hand side of Eq. (13),
W(z; c) can then be computed for any value of ¢ by
way of Eq. (6). In other words, the measured sensor-
response function A® (z) to a Lambertian target pro-
vides all the information necessary to compute the
weighting function W(z; ¢) accurately, which is the
key quantity for calibrating the backscattering sen-
sor to provide a measurement of B({s*).
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4. Analysis of Sensor Response and Calibration

A. Sensor Analysis

We measured the in-water response of the backscat-
tering sensors to a Lambertian target by using a
motor-drive system that moves the target in a con-
tinuous fashion and digitally records its distance, si-
multaneously with the backscattering measurement,
with an optical encoder. The tank water was fil-
tered with a series of filters from 2- to 0.2-um pore
diameter. From the measured response function
A® (z) expressed by Eq. (8), the corresponding
weighting function W(z; ¢,,) as given by Eq. (6) was
computed by the method described above.

Examples of W(z; ¢,,) for all three major genera-
tions of backscattering sensors are shown in Fig. 6.
The curves in this figure illustrate the evolution in
the optical design of the backscattering sensors. For
example, the first-generation sensor-uses no collimat-
ing optics and thus has the broad weighting function
shown in the figure. The second-generation sensor,
which incorporates crude collimating optics, has a
more narrow weighting function. Finally, the third-
generation sensors, the BB-4, BBC-4, and
HydroScat-6, which are designed with more highly
collimating optics, yield the most narrow weighting
function.

Recall Eq. (7), which shows that the detected scat-
tered light is given by the integral of B({) weighted by
W(z; ¢). A perfect sensor with infinitesimal diver-
gence angles would yield a delta function for W(z; ¢),
in which case B(l) would be picked out at a discrete
scattering angle given by the complement of the
crossing angle of the (perfect) beam and receiver
FOV. All real sensors must yield a W(z; ¢) with a
finite width, although the higher the collimation of
the sensor optics, the smaller the width of W(z; ¢), as
shown above. The value of B({s) that results from the
calibrated measurement depends on the shapes of
both W(z; ¢) and B(s) over the limits of integration, as
required by the integral mean-value theorem.
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Fig. 7. W(z; c¢) for the BBC-4 and Petzold average phase function
plotted as a function of the scattering angle.

Sensor-response weighting functions tend to resem-
ble skewed bell curves, as shown in Fig. 6, whereas
the shape of B(¥s) in the backward hemisphere is gen-
erally a broad U shape with a minimum somewhere
between 100° and 140°. It should be expected then
that the value of B({) or B(*) that is picked out will
tend to be near {*(z = z,.,,), where z,., is the dis-
tance z at which the peak of W(z; ¢) occurs.

Figure 7 illustrates these comments with a BBC-4
weighting function and a scattering phase function
created by averaging the VSF measurements re-
ported by Petzold,2 which is probably indicative of the
shapes of most if not all real ocean water phase func-
tions. The phase function shown in Fig. 7 was nor-
malized by b,, not b, so that its solid-angle
integration from 90° to 180° is unity. Both W(z; ¢)
and B(y) are plotted as functions of { over the range
z from ~1 to 10 cm. (As shown in Fig. 6, there is no
sensor response below 1 or above 10 cm.) Clearly,
multiplication of these two functions yields a curve
that still closely resembles W(z; ¢), so that the value
of §* is determined almost entirely by W(z; ¢). Fig-
ure 8 shows B[Ui(z)]W[U(2); ¢], which appears almost
exactly like W(z; ¢) in Fig. 7. It is therefore an ex-
cellent approximation to assume that * is given by
¢* = §(z*), where

z¥= J.m zW(z; c)dz/J.Oc W(z; c)dz (15)

0 0

is defined as the centroid of W(z; ¢). If W(z;c)is a
symmetric function (such as a Gaussian), then z* =
Zpearrr For the BBC-4 weighting function, z* = 4.21
cm and zp,,, = 4.30 cm. These correspond to scat-
tering angles U(2*) = 141.2° and (2peq) = 142.0°.
Numerically computing * by finding that value of ¢
for which

B = f " B IW(z; 0)de / f Wz ode (16)
0 0
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Y

gave ¢* = 141.3° when the Petzold average phase
function was used. This value differs insignificantly
from §(2*), demonstrating that Eq. (15), which is
independent of (1), is an excellent way of computing
¥*. It is recommended that {* be computed in this
manner for all backscattering sensors and reported
along with their backscattering measurements.

There remains the question of the dependence of
W(z; c¢) on the parameter ¢, which could in turn affect
z* or ¥, since they are implicit functions of ¢ by
virtue of Egs. (15) and (16), respectively. W(z; ),
given by Eq. (6), can be expressed in the form

d S

where G(2) is given by Eq. (14). The dependence of
W(z; ¢) on c is therefore seen to be a function of only
the factor exp(—cr) = exp(—1), where r = r, +ryand
T=c¢,. Forthe BBC-4, r ranges from ~4 to 15 cm in
the nonzero region of W(z; ¢). Ifc is of the order of,
for example, 0.1 m™, 7 ranges from 0.004 to 0.015,
and exp(—r) changes in an approximate linear fash.
ion from ~1.00 to 0.98. Ifc is of the order of 1 m !,
7 ranges from 0.04 to 0.15, and exp(—) again changes
in a linear fashion from 0.96 to 0.86. So Wi(z; ¢) is
not expected to be a strong function of ¢ for the BBC-4
optical geometry.

Figure 9 shows W(z; ¢) for three different values of
c. We normalized the three W(z; c)’s to unity to
better illustrate the effect on the shapes of the curves
and their centroid values, which is relevant to P*.
Although all three curves are approximately the
same shape, there is a small but noticeable shift
along the z axis, which corresponds to a shift in .
The shift in ¢* is not large: A change in ¢ by a factor
of 25 from 0.02 to 0.50 m™* changed y* by only 7°,
from 141° to 134°, Nonetheless, this effect should be
kept in mind, especially for measurements in coastal
waters where drastic spatial variability in optical
properties is often found. Moreover, this effect can
be much greater for backscattering sensors with
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longer path lengths or wider optical geometries.
This effect is probably most important for general-
angle scattering meters that are designed to charac-
terize the shape of the VSF.

One can understand the change in ¢* caused by a
change in ¢ by referring to the optical geometry in
Fig. 4. The total scattering volume is given by the
intersection of the beam and detector FOV. How-
ever, the response of the sensor to each infinitesimal
volume dV within the total scattering volume is
weighted by W(z; ¢). In air, where there is no atten-
uation of light, the maximum response is at the dis-
tance z,.,, where dVis a maximum, since W(z; c) is
now a function only of the geometry. In water the
exponential attenuation of light with distance shifts
the maximum response closer to the sensor faceplate.
As the attenuation increases, z -ak decreases.

One can compute the spectralp correction factor o(c,
¢,) given by Eq. (12), for any backscattering sensor by
using the procedure described above for computing
W(z; ¢). The W(z; c,,) from the filtered water cali-
bration needs to be computed only once and then
integrated. W(z;¢) can be computed repeatedly for a
range of ¢’s and integrated. Taking the ratio of
IW(z; ¢, )dz and fW(z; c¢)dz for each value of ¢ yields
acurveforo(c,c,). Figure 10 gives the result for the
440-nm channel of the BBC-4. The initial ¢ value on
the horizontal axis is ¢,, = 0.02 m ™, which was mea-
sured with the BBC-4 transmissometer. This point
corresponds to o(c, ¢,) = o(c,, ¢,) = 1. Values be-
low this were not computed because ocean water in
which backscattering is measured should not be
clearer than filtered laboratory water.

As expected from the foregoing discussion, of(c, c,)
is a small correction factor for relatively low values of
c. Evenavalueofc=1m™? requires only an ~10%
correction in B(y*). But a value of, say,c =4 m!
requires almost a 50% correction in BW*), which is
significant. Such high values of ¢(440 nm) are often
found in coastal and productive ocean waters.
Moreover, in these regions vertical variability can be
extreme, giving large changes in ¢ as well as B(y*), in
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a single profile. Although of(c, ¢,,) is a significant
correction factor for high values of ¢, o(c, ¢, ) itself is
a relatively weak function of ¢ at least for the optical
geometry of the BBC-4 and is therefore insensitive to
changes or errors in the measurement of ¢. It is
important to appreciate this point. For example, a
change in ¢ from 0.02 to 1 m™*, which is a change by
a factor of 50, results in only an ~10% change in o(c,
¢,). In other words, inaccuracies in the measure-
ment or estimation of ¢ used for computing o(c, ¢,,)
generally have only a small effect on the accuracy of

BW™).
B. Estimating the Backward-Scattering Coefficient

In principle, the backward-scattering coefficient b,
can be determined by measuring p({s) over the range
90-180° and then calculating its solid-angle integral
over the backward hemisphere [see Eq. (3)]. For the
routine measurement of b, in the ocean this is clearly
impractical. A much simpler method is to measure
B at a single angle and then multiply it by a scaling
factor to obtain b,. Such an approach was actually
first investigated in the search to develop a simple
means of measuring the total scattering coefficient b.
It is always true that at least one angle, denoted *,
can be found such that 6, = 2wB(\*), which is justi-
fied by the integral mean value theorem,

by = 2 f " B(Y) sin ydy

/2

™

= 2mR (%) f sin ydys

/2

= 2mB(*). an

Note that the angle ¢* depends only on the shape of
the function B(¥) in the range 90-180°.

A properly calibrated fixed-angle backscattering
sensor measures B() at a single nominal angle that

in general is not ¥* no matter how the sensor is
designed. It is useful then to define the ratio

X = BW*)/B(,), (18)

where |, is the nominal scattering angle at which B
is measured by the backscattering sensor. There-
fore

by = 2mxB(Y,). (19)

It remains then to investigate, for a given value of §s,,
that is fixed by the design of the sensor, the mean
value and standard deviation of x for the range of
functions B(y) expected to be found for oceanic wa-
ters.

Oishi* published an analysis on estimating b, from
a single measurement of B(¥) in the backward hemi-
sphere. His study focused mainly on Mie scattering
functions for a polydisperse system of particles as-
sumed to obey a Junge or hyperbolic size distribution,
although he also included some empirical VSF data
published by others. Oishi’s conclusion was that
B(120°) gave the highest correlation to a linear ex-
pression for estimating b,. Expressed another way,
Oishi found that x had the smallest standard devia-
tion for y, = 120°. At this angle he reports x = 1.14.
A careful analysis of his results, however, also reveals
that there is no statistically significant difference in
using B(120°), B(130°), or B(140°) in terms of the
likely errors that result in the final estimation of b,
using Eq. (19). Indeed, Oishi reports that the re-
gression for f(140°) gave a maximum predicted error
that was less than that for §(120°). Considering all
of the uncertainties in his analysis, such as calcula-
tions using Mie theory and the meager empirical data
set that was available, it might seem that the wiser
choice is the angle that gives the lowest maximum
prediction error. For 140° Oishi reports x = 1.08.

An analysis of one of the most well-documented
empirical data sets of the VSF, namely, that of Pet-
zold,?2 sheds further light on this issue. Petzold’s
ocean measurements fall into three categories: (1)
clear ocean water measured in Tongue-of-the-Ocean,
Bahamas, (2) coastal water measured off the coast of
southern California, and (3) turbid water measured
in the San Diego harbor. His results are summa-
rized in Fig. 11 for the range 90°-180°, although
B(180°) was not actually measured and is an extrap-
olation by Petzold (which is not relevant to this dis-
cussion since these values are multiplied by sin = =
0 in the integral for computing 4,). Each curve rep-
resents an average of all the data reported by Petzold
for its particular category. The VSF’s are normal-
ized by the factor 2= /b, for better comparison. Note
that this phase function normalization is inversely
related to x, that is, 2wB()/b, = 1/x.

It is immediately apparent from the three curves in
Fig. 11 that ¢, = 120° yields the least variability in x,
which was essentially Oishi’s conclusion. Clearly,
however, the turbid or harbor water average VSF is a
statistical outlier. Whether this is due to measure-
ment errors or is a real phenomenon remains an open
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Fig. 11. VSF measurements by Petzold? normalized by the factor
2w/b,. Each curve is an average of all the data reported by Pet-
zold for that water type.

question. But the fact is that, as far as the empirical
evidence is concerned, there is little variability in
these curves (excluding the turbid harbor water) and
thus in x over the middle range of scattering angles
for the vast majority of oceanic waters.

It is nonetheless unsatisfying to rest conclusions
solely on the basis of scant empirical VSF data that is
incomplete, unverified, and has not been systemati-
cally investigated in nearly 25 years. The only other
recourse at this time is the theory of Mie.16:17  Sim-
ilar to the investigation conducted by Oishi, we thus
performed a series of calculations of the VSF using
the Mie theory and the computer algorithms pub-
lished in Bohren and Huffman?'¢ with some modifica-
tions. These calculations were performed for a
realistic range of particle refractive indices and
particle-size distributions. The real part of the par-
ticle relative refractive index was varied from 1.05 to
1.15. There was no meaningful effect owing to a
nonzero imaginary refractive index within expected
values. The particle-size distribution density func-
tion was taken to be a Junge (hyperbolic) distribu-
tion, and the exponent or slope on a logarithmic scale
of the distribution was varied from 3.5 to 4.5, which
covers the range of values found in the literature.
Moreover, we performed these calculations over a
range of visible wavelengths from 410 to 675 nm.

The results of these calculations are summarized
in the graph shown in Fig. 12. The VSF’s are nor-
malized by the factor B(s) = 2wB()/b,; note that B(l)
= 1/x. Nine phase functions are shown that repre-
sent the largest spread of all the calculated B(y)’s.
The thick solid curve is the average of all the phase
functions. It was found that the slope of the
particle-size distribution had the strongest effect on
the variability of B({) and therefore x. The phase
function was least sensitive to changes in wavelength
across the visible spectrum. Thus for all practical
purposes x can be considered independent of wave-
length. Varying the particle refractive index had
some affect on the variability of B({), but it was sig-
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Fig.12. Computations of the VSF using Mie theory and assuming
a Junge or hyperbolic particle-size distribution. Curves are nor-
malized by the factor 2wB()/b, = 1/x. The thick solid curve is
the average of all the VSF’s.

nificant only at angles greater than 160°. The stan-
dard deviation in taking the average of all of the
phase functions was statistically a minimum over the
angular range 112°-119°. The percent deviation
(i.e., the standard deviation divided by the average
and multiplied by 100) in this angular range was
~5%. The largest deviations were found at the end
angles, namely 90° and 180°, which is also clearly
apparent in Fig. 12. At 140°, which is the centroid
response angle of the BBC-4 sensor, the percent de-
viation in x was 9% and the average was x = 1.08,
which is in agreement with the value reported by
Oishi.

5. Summary and Conclusions

A rigorous analysis of fixed-angle backscattering sen-
sors has shown that the sensor response to volume
scattering can be expressed as a weighted integral of
the VSF [Eq. (7)] over the sensor’s angular response.
The weighting or sensor-response function W(z; c)
given by Eq. (6) was shown to be a function of both the
geometry of the sensor, which is fixed, and the beam
attenuation coefficient ¢ of the water, which is vari-
able. However, the derivation of W(z; ¢) showed
that it could be separated analytically into two fac-
tors, one solely a function of the sensor optical geom-
etry, G(z) given by Eq. (14), and the other a simple
exponential function of c.

The weighting function is fundamental to calibrat-
ing backscattering sensors and interpreting their
measurements properly. A procedure was given for
accurately determining a sensor’s weighting func-
tion. This procedure involves first measuring the
in-water response of the sensor to a Lambertian tar-
get as a function of distance z. Dividing this mea-
sured response function A® (z) given by Eq. (8) by cos
8, cos 8, then yields W(z; c ) to within a multiplica-
tlve constant that does not need to be known. G{z)
can also be calculated from A® (z), as shown by Eq.



(13). Omnce G(z) is known, W(z; ¢) can be calculated
for any value of c.

When W(z; c) for a particular backscattering sensor
is known, the sensor can be calibrated accurately to
yield measurements of B(y*) in absolute units, in
which ¢* was shown to be a close approximation to
the centroid angle of W(z; ¢). Because W(z; c) de-
pends on ¢, * does as well, although it was shown to
be only a weak function of ¢c. In the worse case s*
changed by ~10° when cichanged by a factor of 25.

We derived a correction factor o(c, ¢,,) given by Eq.
(12) that corrects the backscattering measurement
for the light attenuation by the water. of(c, c,,), like
y*, was also shown to be a weak function of c. How-
ever, for coastal and productive oceanic waters,
where ¢ can often be large and also highly variable,
neglecting the o(c, c,,) correction can regult in s1gn1f-
icant errors in backscattermg measurements

An analysis of a recently developed four-
wavelength backscattering sensor, the BBC-4,
showed that |* = 141° at ¢, = 0.02 m~* (440 nm).
For all backscattering sensors * decreases with in-
creasing ¢ and asymptotes to some minimum value
that depends on the sensor’s optical geometry. For
the BBC-4 this minimum value was found to be #* =
134 at ¢(440 nm) = 0.5 m™ 1.

We investigated the conjecture that the backward-
scattering coefficient b, can be estimated with a mea-
surement of the VSF at a single angle in the
backward hemisphere. VSF measurements by Pet-
zold? show little variability in B(y) = 1/x from clear
blue oceanic waters to coastal waters. The only sig-
nificant change in B({y) was for the highly turbid San
Diego harbor water. Mie theory calculations of the
VSF reveal that the slope of the particle-size distri-
bution has the strongest affect on the variability in
B(l). Nonetheless, for a wide range of calculations
the percent deviation in x was between 5% and 10%
of the average value over the middle range of scat-
tering angles, which is the response range of our
fixed-angle backscattering sensors. For a centroid
response angle of 140° the statistically best equation
for converting the calibrated measurement of B(*) to
by is by = 2w X 1.08B(y*). The standard percent
error in this estimate was calculated to be ~9%.
Thus the backward-scattering coefficient can be fairly
accurately computed from measurements with fixed-
angle backscattering sensors, assuming that the sen-
sors are properly calibrated and that their response
functions cover the middle range of backscattering
angles.

Several people at SRI International contributed to
the initial development of optical backscattering sen-
sors in one way or another. Special acknowledg-
ment and sincere thanks go to Richard Honey and
Jeff Voss. This study was supported by the Environ-

mental Optics Program at the Office of Naval Re-
search.
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